
HiPerC Documentation
Release 0

Trevor Keller

Mar 04, 2019

Contents:

1 High Performance Computing Strategies for Boundary Value Problems 3
1.1 Accelerator Languages . 3
1.2 Basic Algorithm . 4

1.2.1 Source Code Documentation . 5
1.3 Running the Demonstration Programs . 5

1.3.1 What to Expect . 6
1.4 Reusing the Demonstration Code . 7
1.5 Completed Examples . 7

1.5.1 Diffusion Equation . 7
1.5.2 Spinodal Decomposition . 7

1.6 Contributions and Contact . 7
1.7 Disclaimer . 7

2 API Reference 9
2.1 common-diffusion . 9

2.1.1 boundaries.h . 9
2.1.2 discretization.h . 9
2.1.3 mesh.h . 9
2.1.4 numerics.h . 10
2.1.5 output.h . 12
2.1.6 timer.h . 12
2.1.7 type.h . 12

2.2 gpu-cuda-diffusion . 13
2.2.1 cuda_kernels.cuh . 13

2.3 gpu-opencl-diffusion . 14
2.3.1 opencl_data.h . 14
2.3.2 opencl_kernels.h . 15

3 CPU Specifics 17
3.1 cpu-analytic-diffusion . 17

3.1.1 analytic_main.c . 17
3.2 cpu-serial-diffusion . 17

3.2.1 serial_boundaries.c . 17
3.2.2 serial_discretization.c . 18

3.3 cpu-openmp-diffusion . 18
3.3.1 openmp_boundaries.c . 18
3.3.2 openmp_discretization.c . 18

i

3.4 cpu-tbb-diffusion . 19
3.4.1 tbb_boundaries.cpp . 19
3.4.2 tbb_discretization.cpp . 19

4 GPU Specifics 21
4.1 gpu-cuda-diffusion . 21

4.1.1 cuda_boundaries.cu . 21
4.1.2 cuda_discretization.cu . 21

4.2 gpu-openacc-diffusion . 23
4.2.1 openacc_boundaries.c . 23
4.2.2 openacc_discretization.c . 23

4.3 gpu-opencl-diffusion . 23
4.3.1 opencl_boundaries.c . 23
4.3.2 opencl_discretization.c . 24

5 Terms of Use 25

6 Looking for something specific? 27

ii

HiPerC Documentation, Release 0

Contents: 1

HiPerC Documentation, Release 0

2 Contents:

CHAPTER 1

High Performance Computing Strategies for Boundary Value Problems

rst/.github/github.png

Ever wonder if a GPU or Xeon Phi accelerator card would make your code faster? Fast enough to justify the expense
to your manager, adviser, or funding agency? This project can help answer your questions!

The example codes in this repository implement the same basic algorithm using whichever of the mainstream acceler-
ator programming methods apply. Running the code on different parallel hardware configurations — CPU threading,
GPU offloading, and CPU coprocessing — provides a benchmark of these tools using common computational mate-
rials science workloads. Comparing performance against the serial baseline will help you make informed decisions
about which development pathways are appropriate for your scientific computing projects. Note that the examples
do not depend on a particular simulation framework: dependencies are kept minimal, and the C functions are kept as
simple as possible to enhance readability for study and reusability in other codes. The goal here is to learn how to use
accelerators for materials science simulations, not to enhance or promote any particular software package.

1.1 Accelerator Languages

There are six mainstream approaches to shared-memory parallel programming, with varying coding complexity and
hardware dependencies:

POSIX threads MIMD-capable threading for multi-core CPU architectures. Challenging to properly implement, but
with ample opportunity to tune performance. Provided by all compilers and compatible with any hardware
configuration.

OpenMP Loop-level parallelism for multi-core CPU architectures. Simple to implement for SIMD programs, but
with little opportunity for performance tuning. Implementation simply requires prefixing target loops with
#pragma directives. Provided by all compilers and compatible with any hardware configuration.

3

https://github.com/usnistgov/hiperc
http://hiperc.readthedocs.io/en/latest/?badge=latest
https://gitter.im/usnistgov/hiperc?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=body_badge
https://www.codacy.com/app/trevor.keller/hiperc?utm_source=github.com&utm_medium=referral&utm_content=usnistgov/hiperc&utm_campaign=Badge_Grade
http://www.opengroup.org/austin/papers/posix_faq.html
https://en.wikipedia.org/wiki/MIMD
http://www.openmp.org/
https://en.wikipedia.org/wiki/SIMD

HiPerC Documentation, Release 0

Threading Building Blocks Loop-level parallelism for multi-core CPU architectures using C++. Similar to OpenMP,
but requires a wrapper around parallel regions that is more complicated than a one-line #pragma. This provides
more direct opportunities for performance tuning. Available as an open-source library.

OpenACC Loop-level massive parallelism for GPU architectures. Like OpenMP, implementation requires prefixing
target code with #pragma directives, with little opportunity for performance tuning. Provided in compilers
from Cray, PGI, and GNU; depends on a compatible graphics card, drivers, and CUDA or OpenCL library
installation.

CUDA General-purpose massive parallelism for GPU architectures. Like POSIX threading but for GPUs, provides
low-level capabilities and ample opportunity for performance tuning. Requires a purpose-built compiler (nvcc,
gpucc), libraries, and a compatible graphics card or accelerator.

Xeon Phi Low-level and loop-level massive parallelism for ccNUMA many-integrated-core CPU architectures sup-
porting AVX-512 vectorized instructions. First-gen Knights Corner (KNC) cards were coprocessors, but second-
gen Knights Landing (KNL) devices can run code natively. Programmed like threaded CPU code, but with more
opportunities for tuning and much greater performance. Only available through the Intel compiler, and requires
Xeon Phi hardware.

Generically speaking, OpenMP and OpenACC provide low barriers for entry into acceleration; CUDA and Xeon Phi
require high investments for hardware and compilers, but offer the greatest capabilities for performance and opti-
mization of a specific application. CUDA hardware can be emulated on the CPU using the MCUDA framework.
Proof-of-concept trials on GPU and KNL hardware can be run on Amazon’s EC2, Rescale’s ScaleX, and equivalent
HPC cloud computing platforms. Most of the current generation of research supercomputers contain GPU or KNL
accelerator hardware, including Argonne National Labs’ Bebop, NERSC Cori, TACC Stampede2, and XSEDE.

1.2 Basic Algorithm

Diffusion and phase-field problems depend extensively on the divergence of gradients, e.g.

𝜕𝑐

𝜕𝑡
= ∇ ·𝐷∇𝑐

When D is constant, this simplifies to

𝜕𝑐

𝜕𝑡
= 𝐷∇2𝑐

This equation can be discretized, e.g. in 1D:

∆𝑐

∆𝑡
≈ 𝐷

[︃
𝑐+ − 2𝑐∘ + 𝑐−

(∆𝑥)
2

]︃

This discretization is a special case of convolution, wherein a constant kernel of weighting coefficients is applied to an
input dataset to produce a transformed output.

1D Laplacian
1 -2 1

2D Laplacian
5-point stencil
0 1 0
1 -4 1
0 1 0

4 Chapter 1. High Performance Computing Strategies for Boundary Value Problems

https://www.threadingbuildingblocks.org/
http://www.openmp.org/
https://www.openacc.org/
http://www.openmp.org/
http://www.cray.com/
http://www.pgroup.com/
https://gcc.gnu.org/
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-zone
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://en.wikipedia.org/wiki/Non-uniform_memory_access#Cache_coherent_NUMA
https://ark.intel.com/products/codename/57721/Knights-Corner
https://ark.intel.com/products/codename/48999/Knights-Landing
http://www.openmp.org/
https://www.openacc.org/
https://developer.nvidia.com/cuda-zone
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
http://impact.crhc.illinois.edu/mcuda.aspx
https://aws.amazon.com/ec2/Elastic-GPUs/
http://www.rescale.com/products/
http://www.lcrc.anl.gov/systems/resources/bebop/
http://www.nersc.gov/users/computational-systems/cori/
https://www.tacc.utexas.edu/systems/stampede2
https://www.xsede.org/ecosystem/resources
https://en.wikipedia.org/wiki/Discrete_Laplace_operator#Image_Processing

HiPerC Documentation, Release 0

2D Laplacian
9-point stencil*
1 4 1
4 -20 4
1 4 1

* This canonical 9-point (3×3) stencil uses first- and second-nearest neighbors. There is a 9-point (4×4)
form that uses first- and third-nearest neighbors, which is also implemented in the source code; it is less
efficient than the canonical form.

In addition, computing values for the next timestep given values from the previous timestep and the Laplacian values
is a vector-add operation. Accelerators and coprocessors are well-suited to this type of computation. Therefore, to
demonstrate the use of this hardware in materials science applications, these examples flow according to the following
pseudocode:

Start
Allocate arrays using CPU
Apply initial conditions to grid marked "old" using CPU
While elapsed time is less than final time
Do

Apply boundary conditions using CPU
Compute Laplacian using "old" values using accelerator
Solve for "new" values using "old" and Laplacian values using accelerator
Increment elapsed time by one timestep
If elapsed time is an even increment of a specified interval
Then

Write an image file to disk
Endif

Done
Write final values to disk in comma-separated value format
Free arrays

Finish

1.2.1 Source Code Documentation

You are encouraged to browse the source for this project to see how it works. This project is documented using Doxy-
gen, which can help guide you through the source code layout and intent. This guide is included as hiperc_guide.pdf.
To build the documentation yourself, with Doxygen, LaTeX, and Make installed, cd into doc and run make. Then
browse the source code to your heart’s content.

1.3 Running the Demonstration Programs

This repository has a flat structure. Code common to each problem type are lumped together,
e.g. in common-diffusion. The remaining implementation folders have three-part names:
architecture-threading-model. To compile code for your setup of interest, cd into its directory
and run make (note that this will not work in the common folders). If the executable builds, i.e. make returns
without errors, you can make run to execute the program and gather timing data. If you wish to attempt building or
running all the example codes, execute make or make run from this top-level directory: it will recursively call the
corresponding make command in every sub-directory.

1.3. Running the Demonstration Programs 5

http://www.doxygen.nl
http://www.doxygen.nl
http://www.doxygen.nl
https://www.latex-project.org/
https://www.gnu.org/software/make/

HiPerC Documentation, Release 0

1.3.1 What to Expect

As the solver marches along, an indicator will display the start time, progress, and runtime in your terminal, e.g.

Fri Aug 18 21:05:47 2017 [• • • • • • • • • • • • • • • • • • • •] 0h: 7m:15s

If the progress bar is not moving, or to check that the machine is working hard, use a hardware monitoring tool. Here
is a brief, definitely not comprehensive list of options:

• CPU: any system monitor provided by your operating system will work. Look for CPU utilization greater than
100%, but moderate memory consumption. On GNU/Linux systems, htop provides a rich interface to running
processes in the terminal, which is helpful if you’re running remotely.

• GPU: use a GPU monitor designed for your hardware. Some options include nvidia-smi, radeontop, and in-
tel_gpu_top.

• KNL: the same monitor used for the CPU should also report load on the Knights Landing processor.

As it runs, the code will write a series of PNG image files (diffusion.00?0000.png) in the same directory as
the running executable resides; at the end, it will write the final values to diffusion.0100000.csv. It will also
write a summary file, runlog.csv, containing the following columns:

• iter: number of completed iterations

• sim_time: elapsed simulation time (with ∆𝑡 = 1, the first two columns are equal)

• wrss: weighted sum-of-squares residual between the numerical values and analytical solution

• conv_time: cumulative real time spent computing the Laplacian (convolution)

• step_time: cumulative real time spent updating the composition (time-stepping)

• IO_time: cumulative real time spent writing PNG files

• soln_time: cumulative real time spent computing the analytical solution

• run_time: elapsed real time

At timestep 10,000 the expected wrss=0.002895 (0.2%) using the 5-point stencil; the rendered initial and final
images should look like these (grayscale, 0 is black and 1 is white):

𝑡 = 0 · ∆𝑡 𝑡 = 10000 · ∆𝑡

6 Chapter 1. High Performance Computing Strategies for Boundary Value Problems

http://hisham.hm/htop/
https://developer.nvidia.com/nvidia-system-management-interface
https://github.com/clbr/radeontop
https://github.com/ChrisCummins/intel-gpu-tools
https://github.com/ChrisCummins/intel-gpu-tools

HiPerC Documentation, Release 0

The boundary conditions are fixed values of 1 along the lower-left half and upper-right half walls, no flux everywhere
else, with an initial value of 0 everywhere. These conditions represent a carburizing process, with partial exposure
(rather than the entire left and right walls) to produce an inhomogeneous workload and highlight numerical errors at
the boundaries.

If your compiler returns warnings or errors, your simulation results do not look like this, or if wrss at 𝑡 = 10000 ·∆𝑡
is greater than 0.5% or so, something may be wrong with the installation, hardware, or implementation. Please file an
issue and share what happened. You probably found a bug!

Note that a flat field of zeros at 𝑡 = 10000 · ∆𝑡, about as wrong an answer as possible, gives wrss=0.
07493 (7.5%) relative to the analytical solution. Small differences in wrss indicate large errors.

1.4 Reusing the Demonstration Code

The flat file structure is intended to make it easy for you to extract code for modification and reuse in your research
code. To do so, copy the three-part folder corresponding to your setup of interest, e.g. gpu-cuda-diffusion,
to another location (outside this repository). Then copy the contents of the common folder it depends upon, e.g.
common-diffusion, into the new folder location. Finally, edit the Makefile within the new folder to remove
references to the old common folder. This should centralize everything you need to remix and get started in the new
folder.

1.5 Completed Examples

1.5.1 Diffusion Equation

• CPU - analytical - serial - OpenMP - TBB

• GPU - CUDA - OpenAcc - OpenCL

1.5.2 Spinodal Decomposition

• CPU - OpenMP

• GPU - CUDA

1.6 Contributions and Contact

Forks of this git repository are encouraged, and pull requests providing patches or implementations are more than
welcome. Please review the Contributing Guidelines. Questions, concerns, and feedback regarding this source code
should be addressed to the community on Gitter, or directly to the developer (Trevor Keller).

1.7 Disclaimer

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experi-
mental procedure or concept adequately. Such identification is not intended to imply recommendation or endorsement
by the National Institute of Standards and Technology, nor is it intended to imply that the entities, materials, or equip-
ment are necessarily the best available for the purpose.

1.4. Reusing the Demonstration Code 7

https://github.com/usnistgov/hiperc/issues
https://github.com/usnistgov/hiperc/issues
CONTRIBUTING.md
https://gitter.im/usnistgov/hiperc?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=body_badge
mailto:trevor.keller@nist.gov
http://www.nist.gov

HiPerC Documentation, Release 0

8 Chapter 1. High Performance Computing Strategies for Boundary Value Problems

CHAPTER 2

API Reference

2.1 common-diffusion

2.1.1 boundaries.h

Declaration of boundary condition function prototypes.

Functions

void apply_initial_conditions(fp_t **conc_old, const int nx, const int ny, const int nm)
Initialize flat composition field with fixed boundary conditions.

The boundary conditions are fixed values of 𝑐ℎ𝑖 along the lower-left half and upper-right half walls, no flux
everywhere else, with an initial values of 𝑐𝑙𝑜 everywhere. These conditions represent a carburizing process,
with partial exposure (rather than the entire left and right walls) to produce an inhomogeneous workload and
highlight numerical errors at the boundaries.

void apply_boundary_conditions(fp_t **conc_old, const int nx, const int ny, const int nm)
Set fixed value (𝑐ℎ𝑖) along left and bottom, zero-flux elsewhere.

2.1.2 discretization.h

Warning: doxygenfile: Cannot find file “discretization.h

2.1.3 mesh.h

Declaration of mesh function prototypes for diffusion benchmarks.

9

HiPerC Documentation, Release 0

Functions

void make_arrays(fp_t ***conc_old, fp_t ***conc_new, fp_t ***conc_lap, fp_t ***mask_lap, const int
nx, const int ny, const int nm)

Allocate 2D arrays to store scalar composition values.

Arrays are allocated as 1D arrays, then 2D pointer arrays are mapped over the top. This facilitates use of either
1D or 2D data access, depending on whether the task is spatially dependent or not.

void free_arrays(fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, fp_t **mask_lap)
Free dynamically allocated memory.

void swap_pointers(fp_t ***conc_old, fp_t ***conc_new)
Swap pointers to 2D arrays.

Rather than copy data from fp_t** conc_old into fp_t** conc_new, an expensive operation, simply trade
the top-most pointers. New becomes old, old becomes new, with no data lost and in almost no time.

void swap_pointers_1D(fp_t **conc_old, fp_t **conc_new)
Swap pointers to data underlying 1D arrays.

Rather than copy data from fp_t* conc_old[0] into fp_t* conc_new[0], an expensive operation, simply trade
the top-most pointers. New becomes old, old becomes new, with no data lost and in almost no time.

2.1.4 numerics.h

Declaration of Laplacian operator and analytical solution functions.

Defines

MAX_MASK_W
Maximum width of the convolution mask (Laplacian stencil) array.

MAX_MASK_H
Maximum height of the convolution mask (Laplacian stencil) array.

Functions

void set_mask(const fp_t dx, const fp_t dy, const int code, fp_t **mask_lap, const int nm)
Specify which stencil (mask) to use for the Laplacian (convolution)

The mask corresponding to the numerical code will be applied. The suggested encoding is mask width as the
ones digit and value count as the tens digit, e.g. 53 specifies five_point_Laplacian_stencil(), while 93 specifies
nine_point_Laplacian_stencil().

To add your own mask (stencil), add a case to this function with your chosen numerical encoding, then specify
that code in the input parameters file (params.txt by default). Note that, for a Laplacian stencil, the sum of the
coefficients must equal zero and nm must be an odd integer.

If your stencil is larger than 5×5, you must increase the values defined by MAX_MASK_W and MAX_MASK_H.

void five_point_Laplacian_stencil(const fp_t dx, const fp_t dy, fp_t **mask_lap, const int
nm)

Write 5-point Laplacian stencil into convolution mask.

3 × 3 mask, 5 values, truncation error 𝒪(∆𝑥2)

10 Chapter 2. API Reference

HiPerC Documentation, Release 0

void nine_point_Laplacian_stencil(const fp_t dx, const fp_t dy, fp_t **mask_lap, const int
nm)

Write 9-point Laplacian stencil into convolution mask.

3 × 3 mask, 9 values, truncation error 𝒪(∆𝑥4)

void slow_nine_point_Laplacian_stencil(const fp_t dx, const fp_t dy, fp_t **mask_lap,
const int nm)

Write 9-point Laplacian stencil into convolution mask.

5 × 5 mask, 9 values, truncation error 𝒪(∆𝑥4)

Provided for testing and demonstration of scalability, only: as the name indicates, this 9-point stencil is com-
putationally more expensive than the 3 × 3 version. If your code requires 𝒪(∆𝑥4) accuracy, please use
nine_point_Laplacian_stencil().

void compute_convolution(fp_t **const conc_old, fp_t **conc_lap, fp_t **const mask_lap, const
int nx, const int ny, const int nm)

Perform the convolution of the mask matrix with the composition matrix.

If the convolution mask is the Laplacian stencil, the convolution evaluates the discrete Laplacian of the compo-
sition field. Other masks are possible, for example the Sobel filters for edge detection. This function is general
purpose: as long as the dimensions nx, ny, and nm are properly specified, the convolution will be correctly
computed.

void update_composition(fp_t **conc_old, fp_t **conc_lap, fp_t **conc_new, const int nx, const
int ny, const int nm, const fp_t D, const fp_t dt)

Update composition field using explicit Euler discretization (forward-time centered space)

fp_t euclidean_distance(const fp_t ax, const fp_t ay, const fp_t bx, const fp_t by)
Compute Euclidean distance between two points, a and b.

fp_t manhattan_distance(const fp_t ax, const fp_t ay, const fp_t bx, const fp_t by)
Compute Manhattan distance between two points, a and b.

fp_t distance_point_to_segment(const fp_t ax, const fp_t ay, const fp_t bx, const fp_t by,
const fp_t px, const fp_t py)

Compute minimum distance from point p to a line segment bounded by points a and b.

This function computes the projection of p onto ab, limiting the projected range to [0, 1] to handle projections
that fall outside of ab. Implemented after Grumdrig on Stackoverflow, https://stackoverflow.com/a/1501725.

void analytical_value(const fp_t x, const fp_t t, const fp_t D, fp_t *c)
Analytical solution of the diffusion equation for a carburizing process.

For 1D diffusion through a semi-infinite domain with initial and far-field composition 𝑐∞ and boundary value
𝑐(𝑥 = 0, 𝑡) = 𝑐0 with constant diffusivity D, the solution to Fick’s second law is

𝑐(𝑥, 𝑡) = 𝑐0 − (𝑐0 − 𝑐∞)erf

(︂
𝑥√
4𝐷𝑡

)︂
which reduces, when 𝑐∞ = 0, to

𝑐(𝑥, 𝑡) = 𝑐0

[︂
1 − erf

(︂
𝑥√
4𝐷𝑡

)︂]︂
.

void check_solution(fp_t **conc_new, fp_t **conc_lap, const int nx, const int ny, const fp_t dx,
const fp_t dy, const int nm, const fp_t elapsed, const fp_t D, fp_t *rss)

Compare numerical and analytical solutions of the diffusion equation.

Overwrites conc_lap, into which the point-wise RSS is written. Normalized RSS is then computed as the sum
of the point-wise values.

Return Residual sum of squares (RSS), normalized to the domain size.

2.1. common-diffusion 11

https://stackoverflow.com/a/1501725

HiPerC Documentation, Release 0

2.1.5 output.h

Declaration of output function prototypes for diffusion benchmarks.

Functions

void param_parser(int argc, char *argv[], int *bx, int *by, int *checks, int *code, fp_t *D, fp_t *dx, fp_t
*dy, fp_t *linStab, int *nm, int *nx, int *ny, int *steps)

Read parameters from file specified on the command line.

void print_progress(const int step, const int steps)
Prints timestamps and a 20-point progress bar to stdout.

Call inside the timestepping loop, near the top, e.g.

for (int step=0; step<steps; step++) {
print_progress(step, steps);
take_a_step();
elapsed += dt;

}

void write_csv(fp_t **conc, const int nx, const int ny, const fp_t dx, const fp_t dy, const int step)
Writes scalar composition field to diffusion.???????.csv.

void write_png(fp_t **conc, const int nx, const int ny, const int step)
Writes scalar composition field to diffusion.???????.png.

2.1.6 timer.h

Declaration of timer function prototypes for diffusion benchmarks.

Functions

void StartTimer()
Set CPU frequency and begin timing.

double GetTimer()
Return elapsed time in seconds.

2.1.7 type.h

Definition of scalar data type and Doxygen diffusion group.

Typedefs

typedef double fp_t
Specify the basic data type to achieve the desired accuracy in floating-point arithmetic: float for single-precision,
double for double-precision. This choice propagates throughout the code, and may significantly affect runtime
on GPU hardware.

struct Stopwatch
#include <type.h> Container for timing data

12 Chapter 2. API Reference

HiPerC Documentation, Release 0

Public Members

fp_t conv
Cumulative time executing compute_convolution()

fp_t step
Cumulative time executing solve_diffusion_equation()

fp_t file
Cumulative time executing write_csv() and write_png()

fp_t soln
Cumulative time executing check_solution()

2.2 gpu-cuda-diffusion

2.2.1 cuda_kernels.cuh

Declaration of functions to execute on the GPU (CUDA kernels)

Functions

void boundary_kernel(fp_t *conc, const int nx, const int ny, const int nm)
Boundary condition kernel for execution on the GPU.

This function accesses 1D data rather than the 2D array representation of the scalar composition field

Boundary condition kernel for execution on the GPU.

Boundary condition kernel for execution on the GPU

This function accesses 1D data rather than the 2D array representation of the scalar composition field

void convolution_kernel(fp_t *conc_old, fp_t *conc_lap, const int nx, const int ny, const int nm)
Tiled convolution algorithm for execution on the GPU.

This function accesses 1D data rather than the 2D array representation of the scalar composition field, mapping
into 2D tiles on the GPU with halo cells before computing the convolution.

Note:

• The source matrix (conc_old) and destination matrix (conc_lap) must be identical in size

• One CUDA core operates on one array index: there is no nested loop over matrix elements

• The halo (nm/2 perimeter cells) in conc_lap are unallocated garbage

• The same cells in conc_old are boundary values, and contribute to the convolution

• conc_tile is the shared tile of input data, accessible by all threads in this block

void diffusion_kernel(fp_t *conc_old, fp_t *conc_new, fp_t *conc_lap, const int nx, const int ny,
const int nm, const fp_t D, const fp_t dt)

Vector addition algorithm for execution on the GPU.

This function accesses 1D data rather than the 2D array representation of the scalar composition field. Memory
allocation, data transfer, and array release are handled in cuda_init(), with arrays on the host and device managed
through CudaData, which is a struct passed by reference into the function. In this way, device kernels can be
called in isolation without incurring the cost of data transfers and with reduced risk of memory leaks.

2.2. gpu-cuda-diffusion 13

HiPerC Documentation, Release 0

Variables

fp_t d_mask[MAX_MASK_W * MAX_MASK_H]
Convolution mask array on the GPU, allocated in protected memory.

2.3 gpu-opencl-diffusion

2.3.1 opencl_data.h

Declaration of OpenCL data container.

Functions

void report_error(cl_int error, const char *message)
Report error code when status is not CL_SUCCESS.

Refer to https://streamhpc.com/blog/2013-04-28/opencl-error-codes/ for help interpreting error codes.

void build_program(const char *filename, cl_context *context, cl_device_id *gpu, cl_program *pro-
gram, cl_int *status)

Build kernel program from text input.

Source follows the OpenCL Programming Book, https://www.fixstars.com/en/opencl/book/
OpenCLProgrammingBook/calling-the-kernel/

void init_opencl(fp_t **conc_old, fp_t **mask_lap, const int nx, const int ny, const int nm,
struct OpenCLData *dev)

Initialize OpenCL device memory before marching.

void device_boundaries(struct OpenCLData *dev, const int flip, const int nx, const int ny,
const int nm, const int bx, const int by)

Apply boundary conditions on OpenCL device.

void device_convolution(struct OpenCLData *dev, const int flip, const int nx, const int ny,
const int nm, const int bx, const int by)

Compute convolution on OpenCL device.

void device_diffusion(struct OpenCLData *dev, const int flip, const int nx, const int ny,
const int nm, const int bx, const int by, const fp_t D, const fp_t dt)

Solve diffusion equation on OpenCL device.

void read_out_result(struct OpenCLData *dev, const int flip, fp_t **conc_new, const int nx,
const int ny)

Copy data out of OpenCL device.

void free_opencl(struct OpenCLData *dev)
Free OpenCL device memory after marching.

struct OpenCLData
#include <opencl_data.h> Container for GPU array pointers and parameters.

From the OpenCL v1.2 spec:

• A Context is the environment within which the kernels execute and the domain in which synchronization
and memory management is defined. The context includes a set of devices, the memory accessible to
those devices, the corresponding memory properties and one or more command-queues used to schedule
execution of a kernel(s) or operations on memory objects.

• A Program Object encapsulates the following information:

14 Chapter 2. API Reference

https://streamhpc.com/blog/2013-04-28/opencl-error-codes/
https://www.fixstars.com/en/opencl/book/OpenCLProgrammingBook/calling-the-kernel/
https://www.fixstars.com/en/opencl/book/OpenCLProgrammingBook/calling-the-kernel/
https://www.khronos.org/registry/OpenCL/specs/opencl-1.2.pdf

HiPerC Documentation, Release 0

– A reference to an associated context.

– A program source or binary.

– The latest successfully built program executable, the list of devices for which the program executable
is built, the build options used and a build log.

– The number of kernel objects currently attached.

• A Kernel Object encapsulates a specific __kernel function declared in a program and the argument
values to be used when executing this __kernel function.

Public Members

cl_context context
OpenCL interface to the GPU, hardware and software

cl_mem conc_old
Copy of old composition field on the GPU

cl_mem conc_new
Copy of new composition field on the GPU

cl_mem conc_lap
Copy of Laplacian field on the GPU

cl_mem mask
Copy of Laplacian mask on the GPU

cl_program boundary_program
Boundary program source for JIT compilation on the GPU

cl_program convolution_program
Convolution program source for JIT compilation on the GPU

cl_program diffusion_program
Timestepping program source for JIT compilation on the GPU

cl_kernel boundary_kernel
Boundary program executable for the GPU

cl_kernel convolution_kernel
Convolution program executable for the GPU

cl_kernel diffusion_kernel
Timestepping program executable for the GPU

cl_command_queue commandQueue
Queue for submitting OpenCL jobs to the GPU

2.3.2 opencl_kernels.h

Warning: doxygenfile: Cannot find file “opencl_kernels.h

Looking for something specific?

• genindex

• search

2.3. gpu-opencl-diffusion 15

HiPerC Documentation, Release 0

16 Chapter 2. API Reference

CHAPTER 3

CPU Specifics

3.1 cpu-analytic-diffusion

3.1.1 analytic_main.c

Warning: doxygenfile: Cannot find file “analytic_main.c

3.2 cpu-serial-diffusion

3.2.1 serial_boundaries.c

Implementation of boundary condition functions without threading.

Functions

void apply_initial_conditions(fp_t **conc_old, const int nx, const int ny, const int nm)
Initialize flat composition field with fixed boundary conditions.

The boundary conditions are fixed values of 𝑐ℎ𝑖 along the lower-left half and upper-right half walls, no flux
everywhere else, with an initial values of 𝑐𝑙𝑜 everywhere. These conditions represent a carburizing process,
with partial exposure (rather than the entire left and right walls) to produce an inhomogeneous workload and
highlight numerical errors at the boundaries.

void apply_boundary_conditions(fp_t **conc, const int nx, const int ny, const int nm)
Set fixed value (𝑐ℎ𝑖) along left and bottom, zero-flux elsewhere.

17

HiPerC Documentation, Release 0

3.2.2 serial_discretization.c

Implementation of boundary condition functions without threading.

Functions

void compute_convolution(fp_t **const conc_old, fp_t **conc_lap, fp_t **const mask_lap, const
int nx, const int ny, const int nm)

Perform the convolution of the mask matrix with the composition matrix.

If the convolution mask is the Laplacian stencil, the convolution evaluates the discrete Laplacian of the compo-
sition field. Other masks are possible, for example the Sobel filters for edge detection. This function is general
purpose: as long as the dimensions nx, ny, and nm are properly specified, the convolution will be correctly
computed.

void update_composition(fp_t **conc_old, fp_t **conc_lap, fp_t **conc_new, const int nx, const
int ny, const int nm, const fp_t D, const fp_t dt)

Update composition field using explicit Euler discretization (forward-time centered space)

3.3 cpu-openmp-diffusion

3.3.1 openmp_boundaries.c

Implementation of boundary condition functions with OpenMP threading.

Functions

void apply_initial_conditions(fp_t **conc_old, const int nx, const int ny, const int nm)
Initialize flat composition field with fixed boundary conditions.

The boundary conditions are fixed values of 𝑐ℎ𝑖 along the lower-left half and upper-right half walls, no flux
everywhere else, with an initial values of 𝑐𝑙𝑜 everywhere. These conditions represent a carburizing process,
with partial exposure (rather than the entire left and right walls) to produce an inhomogeneous workload and
highlight numerical errors at the boundaries.

void apply_boundary_conditions(fp_t **conc, const int nx, const int ny, const int nm)
Set fixed value (𝑐ℎ𝑖) along left and bottom, zero-flux elsewhere.

3.3.2 openmp_discretization.c

Implementation of boundary condition functions with OpenMP threading.

Functions

void compute_convolution(fp_t **const conc_old, fp_t **conc_lap, fp_t **const mask_lap, const
int nx, const int ny, const int nm)

Perform the convolution of the mask matrix with the composition matrix.

If the convolution mask is the Laplacian stencil, the convolution evaluates the discrete Laplacian of the compo-
sition field. Other masks are possible, for example the Sobel filters for edge detection. This function is general
purpose: as long as the dimensions nx, ny, and nm are properly specified, the convolution will be correctly
computed.

18 Chapter 3. CPU Specifics

HiPerC Documentation, Release 0

void update_composition(fp_t **conc_old, fp_t **conc_lap, fp_t **conc_new, const int nx, const
int ny, const int nm, const fp_t D, const fp_t dt)

Update composition field using explicit Euler discretization (forward-time centered space)

3.4 cpu-tbb-diffusion

3.4.1 tbb_boundaries.cpp

Implementation of boundary condition functions with TBB threading.

Functions

void apply_initial_conditions(fp_t **conc_old, const int nx, const int ny, const int nm)
Initialize flat composition field with fixed boundary conditions.

The boundary conditions are fixed values of 𝑐ℎ𝑖 along the lower-left half and upper-right half walls, no flux
everywhere else, with an initial values of 𝑐𝑙𝑜 everywhere. These conditions represent a carburizing process,
with partial exposure (rather than the entire left and right walls) to produce an inhomogeneous workload and
highlight numerical errors at the boundaries.

void apply_boundary_conditions(fp_t **conc, const int nx, const int ny, const int nm)
Set fixed value (𝑐ℎ𝑖) along left and bottom, zero-flux elsewhere.

3.4.2 tbb_discretization.cpp

Implementation of boundary condition functions with TBB threading.

Functions

void compute_convolution(fp_t **const conc_old, fp_t **conc_lap, fp_t **const mask_lap, const
int nx, const int ny, const int nm)

Perform the convolution of the mask matrix with the composition matrix.

If the convolution mask is the Laplacian stencil, the convolution evaluates the discrete Laplacian of the compo-
sition field. Other masks are possible, for example the Sobel filters for edge detection. This function is general
purpose: as long as the dimensions nx, ny, and nm are properly specified, the convolution will be correctly
computed.

void update_composition(fp_t **conc_old, fp_t **conc_lap, fp_t **conc_new, const int nx, const
int ny, const int nm, const fp_t D, const fp_t dt)

Update composition field using explicit Euler discretization (forward-time centered space)

void check_solution_lambda(fp_t **conc_new, fp_t **conc_lap, const int nx, const int ny, const
fp_t dx, const fp_t dy, const int nm, const fp_t elapsed, const fp_t
D, fp_t *rss)

Looking for something specific?

• genindex

• search

3.4. cpu-tbb-diffusion 19

HiPerC Documentation, Release 0

20 Chapter 3. CPU Specifics

CHAPTER 4

GPU Specifics

4.1 gpu-cuda-diffusion

4.1.1 cuda_boundaries.cu

Implementation of boundary condition functions with OpenMP threading.

Functions

void apply_initial_conditions(fp_t **conc_old, const int nx, const int ny, const int nm)
Initialize flat composition field with fixed boundary conditions.

The boundary conditions are fixed values of 𝑐ℎ𝑖 along the lower-left half and upper-right half walls, no flux
everywhere else, with an initial values of 𝑐𝑙𝑜 everywhere. These conditions represent a carburizing process,
with partial exposure (rather than the entire left and right walls) to produce an inhomogeneous workload and
highlight numerical errors at the boundaries.

void boundary_kernel(fp_t *d_conc, const int nx, const int ny, const int nm)
Enable double-precision floats.

Boundary condition kernel for execution on the GPU.

Boundary condition kernel for execution on the GPU

This function accesses 1D data rather than the 2D array representation of the scalar composition field

4.1.2 cuda_discretization.cu

Implementation of boundary condition functions with CUDA acceleration.

21

HiPerC Documentation, Release 0

Functions

void convolution_kernel(fp_t *conc_old, fp_t *conc_lap, const int nx, const int ny, const int nm)
Tiled convolution algorithm for execution on the GPU.

This function accesses 1D data rather than the 2D array representation of the scalar composition field, mapping
into 2D tiles on the GPU with halo cells before computing the convolution.

Note:

• The source matrix (conc_old) and destination matrix (conc_lap) must be identical in size

• One CUDA core operates on one array index: there is no nested loop over matrix elements

• The halo (nm/2 perimeter cells) in conc_lap are unallocated garbage

• The same cells in conc_old are boundary values, and contribute to the convolution

• conc_tile is the shared tile of input data, accessible by all threads in this block

void diffusion_kernel(fp_t *conc_old, fp_t *conc_new, fp_t *conc_lap, const int nx, const int ny,
const int nm, const fp_t D, const fp_t dt)

Vector addition algorithm for execution on the GPU.

This function accesses 1D data rather than the 2D array representation of the scalar composition field. Memory
allocation, data transfer, and array release are handled in cuda_init(), with arrays on the host and device managed
through CudaData, which is a struct passed by reference into the function. In this way, device kernels can be
called in isolation without incurring the cost of data transfers and with reduced risk of memory leaks.

void device_boundaries(fp_t *conc, const int nx, const int ny, const int nm, const int bx, const
int by)

Apply boundary conditions on device.

void device_convolution(fp_t *conc_old, fp_t *conc_lap, const int nx, const int ny, const int nm,
const int bx, const int by)

Compute convolution on device.

void device_composition(fp_t *conc_old, fp_t *conc_new, fp_t *conc_lap, const int nx, const int
ny, const int nm, const int bx, const int by, const fp_t D, const fp_t
dt)

Step diffusion equation on device.

void read_out_result(fp_t **conc, fp_t *d_conc, const int nx, const int ny)
Read data from device.

void compute_convolution(fp_t **conc_old, fp_t **conc_lap, fp_t **mask_lap, const int bx, const
int by, const int nm, const int nx, const int ny)

Reference showing how to invoke the convolution kernel.

A stand-alone function like this incurs the cost of host-to-device data transfer each time it is called: it is a
teaching tool, not reusable code. It is the basis for cuda_diffusion_solver(), which achieves much better perfor-
mance by bundling CUDA kernels together and intelligently managing data transfers between the host (CPU)
and device (GPU).

void cuda_diffusion_solver(struct CudaData *dev, fp_t **conc_new, const int bx, const int by,
const int nm, const int nx, const int ny, const fp_t D, const fp_t
dt, struct Stopwatch *sw)

Reference optimized code for solving the diffusion equation.

Solve diffusion equation on the GPU.

Compare cuda_diffusion_solver(): it accomplishes the same result, but without the memory allocation, data
transfer, and array release. These are handled in cuda_init(), with arrays on the host and device managed

22 Chapter 4. GPU Specifics

HiPerC Documentation, Release 0

through CudaData, which is a struct passed by reference into the function. In this way, device kernels can be
called in isolation without incurring the cost of data transfers and with reduced risk of memory leaks.

Variables

fp_t d_mask[MAX_MASK_W * MAX_MASK_H]
Convolution mask array on the GPU, allocated in protected memory.

4.2 gpu-openacc-diffusion

4.2.1 openacc_boundaries.c

Implementation of boundary condition functions with OpenMP threading.

Functions

void apply_initial_conditions(fp_t **conc_old, const int nx, const int ny, const int nm)
Initialize flat composition field with fixed boundary conditions.

The boundary conditions are fixed values of 𝑐ℎ𝑖 along the lower-left half and upper-right half walls, no flux
everywhere else, with an initial values of 𝑐𝑙𝑜 everywhere. These conditions represent a carburizing process,
with partial exposure (rather than the entire left and right walls) to produce an inhomogeneous workload and
highlight numerical errors at the boundaries.

void boundary_kernel(fp_t **__restrict__ conc, const int nx, const int ny, const int nm)

void apply_boundary_conditions(fp_t **conc, const int nx, const int ny, const int nm)
Set fixed value (𝑐ℎ𝑖) along left and bottom, zero-flux elsewhere.

4.2.2 openacc_discretization.c

Implementation of boundary condition functions with OpenACC threading.

Functions

void convolution_kernel(fp_t **conc_old, fp_t **conc_lap, fp_t **mask_lap, const int nx, const
int ny, const int nm)

Tiled convolution algorithm for execution on the GPU.

void diffusion_kernel(fp_t **conc_old, fp_t **conc_new, fp_t **conc_lap, const int nx, const int
ny, const int nm, const fp_t D, const fp_t dt)

Vector addition algorithm for execution on the GPU.

4.3 gpu-opencl-diffusion

4.3.1 opencl_boundaries.c

Implementation of boundary condition functions with OpenCL acceleration.

4.2. gpu-openacc-diffusion 23

HiPerC Documentation, Release 0

Functions

void apply_initial_conditions(fp_t **conc_old, const int nx, const int ny, const int nm)
Initialize flat composition field with fixed boundary conditions.

The boundary conditions are fixed values of 𝑐ℎ𝑖 along the lower-left half and upper-right half walls, no flux
everywhere else, with an initial values of 𝑐𝑙𝑜 everywhere. These conditions represent a carburizing process,
with partial exposure (rather than the entire left and right walls) to produce an inhomogeneous workload and
highlight numerical errors at the boundaries.

4.3.2 opencl_discretization.c

Implementation of boundary condition functions with OpenCL acceleration.

Functions

void device_boundaries(struct OpenCLData *dev, const int flip, const int nx, const int ny,
const int nm, const int bx, const int by)

Apply boundary conditions on OpenCL device.

void device_convolution(struct OpenCLData *dev, const int flip, const int nx, const int ny,
const int nm, const int bx, const int by)

Compute convolution on OpenCL device.

void device_diffusion(struct OpenCLData *dev, const int flip, const int nx, const int ny,
const int nm, const int bx, const int by, const fp_t D, const fp_t dt)

Solve diffusion equation on OpenCL device.

void read_out_result(struct OpenCLData *dev, const int flip, fp_t **conc, const int nx, const
int ny)

Copy data out of OpenCL device.

Looking for something specific?

• genindex

• search

24 Chapter 4. GPU Specifics

CHAPTER 5

Terms of Use

This software was developed by employees of the National Institute of Standards and Technology, an agency of
the Federal Government and is being made available as a public service. Pursuant to Title 17 United States Code
Section 105, works of NIST employees are not subject to copyright protection in the United States. This software
may be subject to foreign copyright. Permission in the United States and in foreign countries, to the extent that NIST
may hold copyright, to use, copy, modify, create derivative works, and distribute this software and its documentation
without fee is hereby granted on a non-exclusive basis, provided that this notice and disclaimer of warranty appears in
all copies.

THE SOFTWARE IS PROVIDED ‘AS IS’ WITHOUT ANY WARRANTY OF ANY KIND, EITHER EXPRESSED,
IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY THAT THE SOFTWARE
WILL CONFORM TO SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, AND FREEDOM FROM INFRINGEMENT, AND ANY WARRANTY THAT
THE DOCUMENTATION WILL CONFORM TO THE SOFTWARE, OR ANY WARRANTY THAT THE SOFT-
WARE WILL BE ERROR FREE. IN NO EVENT SHALL NIST BE LIABLE FOR ANY DAMAGES, INCLUD-
ING, BUT NOT LIMITED TO, DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING
OUT OF, RESULTING FROM, OR IN ANY WAY CONNECTED WITH THIS SOFTWARE, WHETHER OR NOT
BASED UPON WARRANTY, CONTRACT, TORT, OR OTHERWISE, WHETHER OR NOT INJURY WAS SUS-
TAINED BY PERSONS OR PROPERTY OR OTHERWISE, AND WHETHER OR NOT LOSS WAS SUSTAINED
FROM, OR AROSE OUT OF THE RESULTS OF, OR USE OF, THE SOFTWARE OR SERVICES PROVIDED
HEREUNDER.

25

http://www.nist.gov
https://www.copyright.gov/title17/92chap1.html#105
https://www.copyright.gov/title17/92chap1.html#105

HiPerC Documentation, Release 0

26 Chapter 5. Terms of Use

CHAPTER 6

Looking for something specific?

• genindex

• search

27

HiPerC Documentation, Release 0

28 Chapter 6. Looking for something specific?

Index

A
analytical_value (C++ function), 11
apply_boundary_conditions (C++ function), 9,

17–19, 23
apply_initial_conditions (C++ function), 9,

17–19, 21, 23, 24

B
boundary_kernel (C++ function), 13, 21
build_program (C++ function), 14

C
check_solution (C++ function), 11
check_solution_lambda (C++ function), 19
compute_convolution (C++ function), 11, 18, 19,

22
convolution_kernel (C++ function), 13, 22, 23
cuda_diffusion_solver (C++ function), 22

D
d_mask (C++ member), 14, 23
device_boundaries (C++ function), 14, 22, 24
device_composition (C++ function), 22
device_convolution (C++ function), 14, 22, 24
device_diffusion (C++ function), 14, 24
diffusion_kernel (C++ function), 13, 22, 23
distance_point_to_segment (C++ function), 11

E
euclidean_distance (C++ function), 11

F
five_point_Laplacian_stencil (C++ func-

tion), 10
fp_t (C++ type), 12
free_arrays (C++ function), 10
free_opencl (C++ function), 14

G
GetTimer (C++ function), 12

I
init_opencl (C++ function), 14

M
make_arrays (C++ function), 10
manhattan_distance (C++ function), 11
MAX_MASK_H (C macro), 10
MAX_MASK_W (C macro), 10

N
nine_point_Laplacian_stencil (C++ func-

tion), 10

O
OpenCLData (C++ class), 14
OpenCLData::boundary_kernel (C++ member),

15
OpenCLData::boundary_program (C++ mem-

ber), 15
OpenCLData::commandQueue (C++ member), 15
OpenCLData::conc_lap (C++ member), 15
OpenCLData::conc_new (C++ member), 15
OpenCLData::conc_old (C++ member), 15
OpenCLData::context (C++ member), 15
OpenCLData::convolution_kernel (C++ mem-

ber), 15
OpenCLData::convolution_program (C++

member), 15
OpenCLData::diffusion_kernel (C++ mem-

ber), 15
OpenCLData::diffusion_program (C++ mem-

ber), 15
OpenCLData::mask (C++ member), 15

P
param_parser (C++ function), 12

29

HiPerC Documentation, Release 0

print_progress (C++ function), 12

R
read_out_result (C++ function), 14, 22, 24
report_error (C++ function), 14

S
set_mask (C++ function), 10
slow_nine_point_Laplacian_stencil (C++

function), 11
StartTimer (C++ function), 12
Stopwatch (C++ class), 12
Stopwatch::conv (C++ member), 13
Stopwatch::file (C++ member), 13
Stopwatch::soln (C++ member), 13
Stopwatch::step (C++ member), 13
swap_pointers (C++ function), 10
swap_pointers_1D (C++ function), 10

U
update_composition (C++ function), 11, 18, 19

W
write_csv (C++ function), 12
write_png (C++ function), 12

30 Index

	High Performance Computing Strategies for Boundary Value Problems
	Accelerator Languages
	Basic Algorithm
	Source Code Documentation

	Running the Demonstration Programs
	What to Expect

	Reusing the Demonstration Code
	Completed Examples
	Diffusion Equation
	Spinodal Decomposition

	Contributions and Contact
	Disclaimer

	API Reference
	common-diffusion
	boundaries.h
	discretization.h
	mesh.h
	numerics.h
	output.h
	timer.h
	type.h

	gpu-cuda-diffusion
	cuda_kernels.cuh

	gpu-opencl-diffusion
	opencl_data.h
	opencl_kernels.h

	CPU Specifics
	cpu-analytic-diffusion
	analytic_main.c

	cpu-serial-diffusion
	serial_boundaries.c
	serial_discretization.c

	cpu-openmp-diffusion
	openmp_boundaries.c
	openmp_discretization.c

	cpu-tbb-diffusion
	tbb_boundaries.cpp
	tbb_discretization.cpp

	GPU Specifics
	gpu-cuda-diffusion
	cuda_boundaries.cu
	cuda_discretization.cu

	gpu-openacc-diffusion
	openacc_boundaries.c
	openacc_discretization.c

	gpu-opencl-diffusion
	opencl_boundaries.c
	opencl_discretization.c

	Terms of Use
	Looking for something specific?

